When can we improve on sample average approximation for stochastic optimization?
نویسندگان
چکیده
منابع مشابه
The Sample Average Approximation Method for 2-stage Stochastic Optimization
We consider the Sample Average Approximation (SAA) method for 2-stage stochastic optimization problems with recourse and prove a polynomial time convergence theorem for the SAA method. In the 2-stage recourse model, where one makes decisions in two steps. First, given only distributional information about (some of) the data, one commits on initial (first-stage) actions, and then once the actual...
متن کاملSample Average Approximation Method for Compound Stochastic Optimization Problems
The paper studies stochastic optimization (programming) problems with compound functions containing expectations and extreme values of other random functions as arguments. Compound functions arise in various applications. A typical example is a variance function of nonlinear outcomes. Other examples include stochastic minimax problems, econometric models with latent variables, multi-level and m...
متن کاملThe Sample Average Approximation Method for Stochastic Discrete Optimization
In this paper we study a Monte Carlo simulation–based approach to stochastic discrete optimization problems. The basic idea of such methods is that a random sample is generated and the expected value function is approximated by the corresponding sample average function. The obtained sample average optimization problem is solved, and the procedure is repeated several times until a stopping crite...
متن کاملStochastic Multiobjective Optimization: Sample Average Approximation and Applications
We investigate one stage stochastic multiobjective optimization problems where the objectives are the expected values of random functions. Assuming that the closed form of the expected values is difficult to obtain, we apply the well known Sample Average Approximation (SAA) method to solve it. We propose a smoothing infinity norm scalarization approach to solve the SAA problem and analyse the c...
متن کاملSample Average Approximation for Stochastic Dominance Constrained Programs
In this paper we study optimization problems with second-order stochastic dominance constraints. This class of problems has been receiving increasing attention in the literature as it allows for the modeling of optimization problems where a risk-averse decision maker wants to ensure that the solution produced by the model dominates certain benchmarks. Here we deal with the case of multi-variate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operations Research Letters
سال: 2020
ISSN: 0167-6377
DOI: 10.1016/j.orl.2020.05.016